
Jazzbot: A non-monotonically reasoning bot in a
simulated 3D environment

Peter Novák, David Mainzer, Michael Köster, Bernd Fuhrmann

Department of Computer Science
Clausthal University of Technology

Julius-Albert-Str. 4, D-38678 Clausthal-Zellerfeld, Germany
peter.novak@tu-clausthal.de

ABSTRACT
In our previous research we designed Jazzyk, a modular pro-
gramming language for development of cognitive agent sys-
tems. Jazzyk obeys two basic design principles: 1) it allows
for an easy integration of heterogeneous knowledge repre-
sentation technologies, and 2) draws a strict distinction be-
tween modeling agent’s knowledge and reasoning vs. its be-
haviours.

To further drive the development of Jazzyk, we imple-
mented Jazzbot, a softbot embodied in a simulated 3D envi-
ronment of a computer game Nexuiz. The core of Jazzbot ’s
belief base is implemented as a logic program interpreted
in the semantics of Answer Set Programming, thus exploit-
ing the power of non-monotonic reasoning. It is comple-
mented by a Ruby language module for representing the
bot’s topological knowledge about the environment. Jazzbot
thus demonstrates the synergistic effect of using heteroge-
neous, in this case declarative and object-oriented, KR tech-
nologies in a single agent system.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Intelligent Agents; I.2.11 [Artificial Intelligence]:
Miscelaneous—Virtual Agents

Keywords
Jazzbot; Jazzyk; virtual agents; hybrid agent architectures;
reactive vs. deliberative; open-source software tools

1. INTRODUCTION
In order to exploit a synergy of various heterogeneous KR

approaches in single agent systems, in [2] we proposed a
modular agent programming framework of Behavioural State
Machines (BSM ). As a proof of the concept we subsequently
implemented Jazzyk, a full featured interpreter1 for BSM.

1The first version of Jazzyk interpreter together with a soft-
ware development kit for Jazzyk modules was published
under GNU GPL license at http://jazzyk.sourceforge.
net/.

To further drive the development of Jazzyk and study
its applications, we implemented Jazzbot, a virtual agent
embodied in a simulated 3D environment of a first-person
shooter computer game Nexuiz 2.

This paper describes the architecture of and technolo-
gies employed in Jazzbot implementation. Section 2, briefly
sketches the underlying framework of Behavioural State Ma-
chines. Without going into details, in Section 3, we sub-
sequently provide an overview of the Jazzbot’s design, the
KR technologies employed and the agent’s interaction with
the environment. Section 4 concludes this report by a brief
discussion of the related work and outlooks for future devel-
opment of Jazzyk and its applications.

2. BEHAVIOURAL STATE MACHINES
The theoretical framework of Behavioural State Machines

is a current evolution of Modular BDI Architecture frame-
work, we proposed in [3]. BSM draw a strict distinction be-
tween the knowledge representational and behavioural layer
of an agent program. An agent consists of a set of KR mod-
ules, each providing a set of query and update interface rou-
tines, and an agent program encoding the agent’s behaviours
in terms of nested reactive ruleOur project follows the spirit
of [1], where Laird and van Lent argue that approaches for
programming intelligent agents should be tested in realistic
and sophisticated environments of modern computer games.
s. The basic rules consist of two parts: a query and an up-
date. Queries are expressions accessing the underlying mod-
ules via their provided interface routines and if evaluated to
true, the execution of the right hand update part is enabled.
A primitive update is again an invocation of a KR module
interface routine, modifying the underlying partial knowl-
edge base (KB) of the agent. Updates and rules form basic
mental state transformers (mst’ s), Jazzyk ’s higher level syn-
tactic constructs allowing source code modularization of an
agent program, which in turn is a mst as well. The main
focus of BSM framework and in turn Jazzyk language, is
thus the highest level of control of an agent: its behaviours.

The underlying semantic abstraction is that of a transi-
tion system over a set of agent’s mental states and a set of
transitions between them. Agent’s mental state is a collec-
tion of partial states of its KBs represented by the agent’s
KR modules. As the interaction with the environment is fa-
cilitated by specialized KR modules as well, the state of the
environment is included in the agent’s mental state. Transi-

2http://www.alientrap.org/nexuiz



tions are induced by updates of components of mental states.
An agent system semantics is then a set of all enabled paths
within the transition system, which the agent can traverse
during its lifetime. Alternatively, the computational model
of BSM provides a functional view on an agent program,
specifying a set of enabled transitions/updates, the agent
can execute in a situation it happens to be in.

3. THE BOT IMPLEMENTATION
Jazzbot is a goal-driven agent. It features a belief base, goal

base, and an interface to its virtual body in a Nexuiz environ-
ment. While the goal base consists of a single KB realized
as an ASP logic program, the belief base is composed of two
modules: ASP logic programming one and a Ruby module.
The interface to the environment is facilitated by a Nexuiz
game client module.

Answer Set Programming module is realized by a Jazzyk
module which integrates an ASP solver Smodels [5]. Hence
the syntax and the semantics of logic programs the module
handles, i.e. query/update formulae, is that of Smodels.
Query formulae query the answer sets (stable models) of
the actual logic program in the knowledge base. The ASP
KR module implements only a naive LP update mechanism.

As we note in [2], different KR tasks require different
KR technologies. Therefore we chose an interpreted object-
oriented programming language Ruby3 for representation of
topological knowledge about the environment. The Ruby
module features a simple query/update interface allowing
evaluation of arbitrary Ruby expressions.

The environment, Jazzbot operates in, is provided by a
remote Nexuiz server. Nexuiz is an open-source 3D first-
person shooter computer game based on the Quake Dark-
Places4 engine. The Nexuiz KR module implements a client
functionality and facilitates the bot’s interaction with the
game server. Jazzbot can exploit several virtual sensors: gps,
sonar, compass, surface sensor and health status sensor, as
well as effectors of its virtual body allowing it to move, jump,
turn, use an item, attack, or utter a plain text message. The
sensory interface is designed so, that it provides only a strict
subset of the information of that a human game player can
perceive.

Jazzbot ’s behaviours are implemented as a Jazzyk pro-
gram. Jazzbot can fulfill e.g. search and deliver tasks in the
simulated environment while it avoids obstacles and walls.
Figure 1 depicts the architecture of Jazzbot and features
a Jazzyk code chunk implementing a simple behaviour of
picking up an object by mere walking through it and then
keeping notice about it in its ASP belief base.

4. DISCUSSION AND RELATED WORK
Our project follows the spirit of [1], where Laird and

van Lent argue that approaches for programming intelligent
agents should be tested in realistic and sophisticated envi-
ronments of modern computer games. Similarly to [6], we
put Jazzyk language to a test in such a challenging environ-
ment. Unlike other agent programming frameworks, Jazzyk
allows easy integration of heterogeneous KR approaches in
Jazzbot-like softbots. By replacing ASP KR module, such
agents can serve as a test-bed for various other KR ap-
proaches in the context of intelligent agents.

3http://www.ruby-lang.org/
4http://icculus.org/twilight/darkplaces/

Figure 1: Scheme of Jazzbot

In [4], authors describe Qsmodels architecture based Quake
bots implemented in plain ASP/Smodels. Qsmodels bots
use planning as the primary approach to implementation
of behaviours. We rather take a position that logic-based
reasoning techniques are better suited for reasoning about
static aspects of an environment, rather than for steering
agents’ behaviours. Unlike Qsmodels planning bot, Jazzbot
is a rather reactive agent with strong support for delibera-
tive features.

Currently we are working on a KR module providing inter-
agent communication facilities using a standardized agent
communication language. That will allow us to investigate
implementations of teams of Jazzyk/Jazzbot agents.

5. REFERENCES
[1] John E. Laird and Michael van Lent. Human-level AI’s

killer application: Interactive computer games. AI
Magazine, 22(2):15–26, 2001.

[2] Peter Novák. An open agent architecture:
Fundamentals (revised version). Technical Report
IfI-07-10, Department of Informatics, Clausthal
University of Technology, November 2007.

[3] Peter Novák and Jürgen Dix. Modular BDI
architecture. In Hideyuki Nakashima, Michael P.
Wellman, Gerhard Weiss, and Peter Stone, editors,
AAMAS, pages 1009–1015. ACM, 2006.

[4] Luca Padovani and Alessandro Provetti. Qsmodels:
ASP planning in interactive gaming environment. In
José Júlio Alferes and João Alexandre Leite, editors,
JELIA, volume 3229 of Lecture Notes in Computer
Science, pages 689–692. Springer, 2004.

[5] Tommi Syrjänen and Ilkka Niemelä. The Smodels
System. In Thomas Eiter, Wolfgang Faber, and
Miroslaw Truszczynski, editors, LPNMR, volume 2173
of Lecture Notes in Computer Science, pages 434–438.
Springer, 2001.

[6] Michael van Lent, John E. Laird, Josh Buckman, Joe
Hartford, Steve Houchard, Kurt Steinkraus, and Russ
Tedrake. Intelligent agents in computer games. In
AAAI/IAAI, pages 929–930, 1999.


